We look forward to answering any questions or sharing additional information about our silicon carbide ceramic offerings and support services. Whether you’re exploring custom prototypes or scaling production for extreme industrial applications, our team is ready to guide you through the capabilities of this exceptional material.
We customize every aspect to meet your precise requirements, from purity grades to dimensional tolerances. Below are examples from our previous projects, showcasing high-precision abrasives, refractory liners, semiconductor substrates, and grinding balls for mineral processing. Ready to design your custom parts? Contact us today—our engineers can collaborate on CAD models and rapid prototyping to accelerate your schedule.
The history of silicon carbide (碳化硅) ceramics begins in 1893, when American chemist Edward Goodrich Aitchson accidentally discovered it while attempting to synthesize diamonds by heating a mixture of sand and carbon to produce “carborandum”—the first commercial abrasive. Initially prized for its Mohs hardness of 9.5, SiC quickly revolutionized grinding and polishing by the early 1900s, surpassing natural abrasives like corundum. The 1920s marked its entry into refractories, with the Aitchson process, which enabled the mass production of furnace linings amid the steel boom.
After World War II, SiC’s potential as a semiconductor became apparent in the 1950s, with early diodes exploiting its wide bandgap (3.26 eV) for high-power electronics—pioneered by General Electric. The energy crisis of the 1970s accelerated its use in thermal engines, while advances in chemical vapor deposition (CVD) in the 1980s opened up pure crystals for LEDs and power devices. Biomedical applications grew in the 1990s for biocompatible coatings. Today, global production exceeds 1.5 million tons annually, fueled by electric vehicles (SiC MOSFETs), renewable energy (solar panel inverters), and 5G—evolving from an abrasive standard to a $5 billion powerhouse in harsh, high-performance applications.
Its polytypic structures—more than 200 α/β forms—have enabled bandgap tuning, from blue LEDs (Nobel Prize 1990) to 1200-volt electric vehicles, reflecting SiC’s shift from sand to “silicon’s rival.” The recent surge in demand for mineral/cement grinding media underscores its enduring abrasive heritage.
Silicon carbide (碳化硅) ceramics, a covalent compound of silicon and carbon, are a leading class of non-oxide materials renowned for their unmatched hardness, thermal/electrical conductivity, and resistance to oxidation, corrosion, and thermal shock up to 1600°C. With a density of ~3.2 g/cm³ (60% of steel) but a flexural strength of 400 MPa and an HV of 2100, SiC excels in abrasive, high-thermal, or electrochemical environments where metals degrade. Its hexagonal (一个) or cubic (乙) polygons allow for tuned band gaps (2.4–3.3 eV), ideal for semiconductors; the self-lubricating microstructure yields friction coefficients <0.2.
Its performance is based on strong Si-C bonds, providing a CTE of 3.5 x 10⁻⁶ K⁻¹ for composites without mismatches and a conductivity of 90–490 W/m K for radiators. Inert to acids and alkalis (except HF), it is indispensable for chemical pumps or armor. More expensive than aluminum oxide ($20–50/kg vs. $5–20), SiC’s 10–20 times the service life and efficiency gains (e.g., +30% range for electric vehicles) justify the premium, with processability aiding sustainability.
The black and green hues of SiC, free from impurities, offer aesthetic and functional versatility; it is non-toxic and FDA-compliant for medical and food contact. From Aitchson sand to Wolfspeed plates, SiC bridges the mechanical and electronic worlds, with grinding balls exemplifying its abrasive power in mineral processing.
Silicon carbide ceramics are available in formulations tailored by synthesis and dopants for conductivity, purity, or transparency. Key differences include Black SiC, Green SiC, Reaction-Bonded SiC (红细胞干细胞), Sintered SiC (SSC), and CVD SiC. Each optimizes the phase (a/b) for its application. Breakdown:
Overview : Manufactured in an Eichson furnace at 2200-2500°C from petroleum coke/silica, 97-99% SiC with iron impurities.
Improvements : Economical ($10–20/kg), high viscosity (K_IC 4) for bulk abrasives; suitable for grinding balls in heavy mills.
Applications : Grinding wheels, refractories, wear tiles in mining/cement and SiC grinding balls for efficient ore grinding.
| 财产 | 单位. 改变. | 测试标准 | 黑碳化硅 | 绿色碳化硅 | 红细胞干细胞 | SSC | CVD碳化硅 |
| 材料 | – | – | 黑色的 | 绿色的 | 多孔的 | 稠密 | 电影 |
| 密度 | 克/立方厘米 | 国际标准化组织 18754 | 3,15 | 3,20 | 2,7 | 3,10 | 3,21 |
| 弯曲强度 | 兆帕 | ASTM C1161 | 400 | 450 | 250 | 400 | 500 |
| 抗压强度 | 兆帕 | 国标/T 8489 | 2000 | 2200 | 1500 | 2000 | 2500 |
| 杨氏模量 | GPa | ASTM C1198 | 430 | 450 | 300 | 410 | 460 |
| 断裂韧性 | 兆帕·米1/2 | ASTM C1421 | 4 | 4,5 | 3 | 4 | 5 |
| 泊松比 | – | ASTM C1421 | 0,16 | 0,16 | 0,17 | 0,16 | 0,15 |
| 硬度 HRA | 人力资源管理局 | 洛氏60N | 94 | 95 | 92 | 94 | 96 |
| 维氏硬度 | 高压V1 | ASTM C1327 | 2100 | 2200 | 1800 | 2100 | 2500 |
| 热膨胀 | 10⁻⁶ K⁻1 | ASTM E1461 | 3,5 | 3,4 | 3,6 | 3,5 | 3,3 |
| 导热系数 | 瓦/米·K | ASTM E1461 | 90 | 120 | 50 | 90 | 490 |
| 抗热震性 | ΔT (℃) | – | 600 | 650 | 500 | 600 | 700 |
| 最大限度. 步伐. (氧化) | ℃ | 无负载 | 1350 | 1400 | 1200 | 1350 | 1600 |
| 最大限度. 步伐. (恢复/惰性) | ℃ | 无负载 | 1350 | 1400 | 1400 | 1600 | 2000 |
| 体积电阻 (20℃) | 欧姆·厘米 | – | 10⁵ | 10⁴ | 10⁶ | 10⁵ | 10立方 |
| 介电强度 | 千伏/毫米 | – | 0 | 0 | 5 | 0 | 0 |
| 介电常数 (1 兆赫兹) | – | ASTM D2149 | 不适用 | 不适用 | 10 | 不适用 | 不适用 |
| 介电损耗 (20℃, 1 兆赫兹) | 正切δ | ASTM D2149 | 不适用 | 不适用 | 10⁻² | 不适用 | 不适用 |
笔记: 烧结等级的值; CVD 超过 (电导率 490 瓦/米·K, 纯度 99,9995%).
精密工程基准测试
SiC 具有优异的导电性/硬度, 优于半导体/热中的氧化物. 与金属/陶瓷的扩展比较:
| 特征 | 碳化硅陶瓷 | 氧化铝陶瓷 | 钢合金 | 碳化钨 |
| 强度和韧性 | 高的 (K_IC 4) | 抗压性强, 脆弱的 | 延展性, 容易疲劳 | 高的, 脆弱的 |
| 热稳定性 | 出色的 (1600℃) | 出色的 (1800℃) | 好的 (〜800°C) | 防火 (2800℃) |
| 耐磨性 | 卓越的 (高压 2100) | 最高等级 (高压 1500) | 缓和 (生锈) | 精英 (高压 2000) |
| 耐腐蚀 | 高惰性 | 出色的 (酸) | 倾斜 | 强的 (酸) |
| 透明度 | 不透明 (半透明CVD) | 半透明 | 不透明 | 不透明 |
| 生物相容性 | 高的 (国际标准化组织 10993) | 高的 | 各不相同 (有毒的) | 各不相同 |
| 电气绝缘 | 半导体 (10⁴–10⁵ 欧姆·厘米) | 出色的 | 导电 | 导电 |
| 磁性行为 | 无磁 | 无磁 | 铁磁 | 无磁 |
| 价格 (每公斤) | 缓和 ($20–50) | 低的 ($5–20) | 低的 ($1–5) | 高的 ($100+) |
| 密度 (克/立方厘米) | 3,2 | 3,9 | 7,8 | 15,6 |
SiC 属性提供生命周期优势:
SiC 在磨料/电子极端条件下大放异彩, 其硬度/导电性是不可替代的. 以下是扩展后的前 10 名:
SiC特性的结合巩固了其在高科技领域的地位, 市场估值为 $10 十亿千 2030 年.
标准 SiC 不透明黑/绿, 然而 CVD 和掺杂 (不适用) 选项可提供红外半透明效果.
SiC 部件通过粉末和蒸汽工艺形成,以提高密度 >99%. 下面是工作流程:
SiO2/碳混合物或 CVD 前体 (SiH₄/C₃H₈). 用于研磨球 - 粉末 <10 微米.
磨碎至 1–5 μm; 添加粘合剂和掺杂剂.
有机物去除温度高达 800°C.
2000–2200°C, 氩气; 血红蛋白/红细胞干细胞; 用于高密度的 HIP.
金刚石研磨至 Ra 0,01 微米; 球排序 >99% 球形度.
X射线, ASTM 弯曲, 三坐标测量机.
包装有证书, 每年可扩展至数百万种产品.
出口: 95%, 国际标准化组织 9001.
碳化硅轨迹: 更宽的带隙, 更环保.
盘子 200 电动汽车用毫米, 效率 +40%; 用于亚微米 PSR 的纳米 SiC 磨削.
3D 打印喷嘴/球, 浪费 -50%.
种植体用HA, 一体化 +20%.
量子位无缺陷.
碳化硅加工, 二氧化碳 -25%; 艾奇森生物炭.
复合年增长率 15% 到 $10 十亿千 2030 年, 电动汽车/可再生能源; 研磨介质 $2 十亿细分市场.